Experimental investigations on photoelectric and triboelectric charging of dust
نویسندگان
چکیده
Experiments are performed pertaining to the charging of single dust particles in space due to three effects: (1) photoemission, (2) the collection of electrons from a photoemissive surface, and (3) triboelectric charging. The particles tested are 90–106 mm in diameter and include JSC-1 (lunar regolith simulant) and JSC-Mars-1 (Martian regolith simulant). Isolated conducting grains (Zn, Cu, and graphite) illuminated by ultraviolet light reach a positive equilibrium floating potential (a few volts) that depends upon the work function of the particle. Conducting grains dropped past a photoemitting surface attain a negative floating potential for which the sum of the emitted and collected currents is zero. Nonconducting grains (glass, SiC, and the regolith simulants) have a large initial triboelectric charging potential (up to 615 V) with a distribution approximately centered on zero. The nonconducting grains are weak photoemitters, and they attain a negative floating potential when dropped past a photoemitting surface. Our experimental results show that for silicate planetary regolith analogs, triboelectric charging may be the dominant charging process and will therefore play an important role in the subsequent behavior of dust grains released from planetary surfaces.
منابع مشابه
The role of water content in triboelectric charging of wind-blown sand
Triboelectric charging is common in desert sandstorms and dust devils on Earth; however, it remains poorly understood. Here we show a charging mechanism of sands with the adsorbed water on micro-porous surface in wind-blown sand based on the fact that water content is universal but usually a minor component in most particle systems. The triboelectric charging could be resulted due to the differ...
متن کاملEffect of particle size distribution on the polarity of triboelectric charging in granular insulator systems
Triboelectric charging occurs in granular insulating systems even when all particles are composed of identical material. A simple model is used here to address triboelectric charging in such systems. The basis of the model is the existence of electrons trapped in high-energy states, which can be released during collisions with another particle and transferred to the other particle. This model s...
متن کاملA simple electrodynamic model of a dust devil
[1] We present an electrodynamic model of a dust devil applying a similar methodology as performed previously for charging in terrestrial thunderstorms. While thunderstorm processes focus on inductive charging between large graupel and smaller ice and water droplets, we tailor the model to focus on the electric charge transfer between dust grains of different sizes and compositions. We specific...
متن کاملProposal of an Electrodynamic Trap for Photoemission Measurements on Dust Grains
Abstract. Laboratory simulations of charging dust grains are a way to understanding the role of dust grains in complex plasma in space as well as in technical applications. Our laboratory experiment von dust particles is based on an electrodynamic quadrupole trap in that we are able to hold a single dust particle for a long time (typically tens of hours) and to study effects induced by charging...
متن کاملElectrical discharges and broadband radio emission by Martian dust devils and dust storms
[1] Triboelectric charging of saltating and colliding sand and dust particles produces strong electric fields in terrestrial dust devils and dust storms. Acceleration of the charged particles, as well as microdischarges between them, generates wideband electromagnetic radiation. Similar phenomena are expected to be ubiquitous on Mars, because Martian dust devils and dust storms are larger, stro...
متن کامل